Comparison of methods | حدة | ELU | × | | |----------|----------|--------|--| | a WuXi A | ppTec co | ompany | | | | • | | a WuXi App1ec compar | |--|--|---|---| | | Advantages | Disadvantages | Information obtained and Range | | Affinity Selection Mass Spectrometry (AS-MS) | High-throughput Can be applied to solubilized membrane proteins Ligand mass detection allows verification of compound structure | Low-affinity binders are hard to detect | < 10 μΜ | | Differential Scanning Fluorimetry (DSF) | Estimates the effect of the ligand on the thermal stability of a protein Fast and robust assay development | Requires a fluorescent dye Artefacts occur owing to fluorescence quenching or aggregation | 1 nM–100μM | | Dynamic Light Scattering (DLS) | Measures particle assize across the range ${\sim}0.1$ nm to 10 μm Low probe consumption | Low resolution Large particles even when present in small quantities may impact the measurement | Translational diffusion coefficient (D_t), R_h , d_h , B_{22} , k_D , viscosity | | Fluorescence Polarization (FP) | Homogenous assay | Narrow measurement window Sensitive to fluorescence interference | K _d
1 nM – 1 mM | | Homogeneous Time Resolved Fluorescence (HTRF) | Homogenous assay Highly sensitive and robust | Requires two labels | K_d , EC_{50} , k_{on} , k_{off}
1 pM – 1 mM | | Isothermal Titration Calorimetry (ITC) | Direct determination of thermodynamic parameters for a binding event | Very high protein consumption Requires high solubility of titrated component | K_d , ΔH, ΔS, ΔG, stoichiometry
1 nM – 100 μ M | | Microscale Thermophoresis (MST) | In-solution measurements Applicable also for challenging targets (e.g., IDPs, solubilized membrane proteins) Low probe consumption | Requires labeling of the target with a fluorophore or strong intrinsic fluorescence Low protein consumption | K _d
1 pM – 1 mM | | Nano-Differential Scanning Fluorimetry (nanoDSF) | Estimates the effect of the ligand on the thermal stability of a protein Fast and robust assay development Relies on intrinsic fluorescence of a protein Low protein consumption | No measurements possible when protein lacks tryptophan or tyrosine residues | T _m , C _m , ΔG | | Surface Plasmon Resonance (SPR) | Time-resolved quantification of interactions | Requires immobilization of the probe to the surface
Requires highly stable protein
Signals affected by solvent effect | k_{on} , k_{off} , stoichiometry
1 pM – 500 μ M | | SwitchSense | Molecular dynamics
Conformational change | Immobilization to DNA required | k_{on} , k_{off} , K_{d} , d_{h} , stoichiometry | | Time-Resolved Fluorescence (TR-FRET) | Homogenous assay
Highly sensitive and robust | Requires two labels | K_d , EC_{50} , k_{on} , k_{off}
1 pM - 1 mM | | | | | 30 VB /8 48. |