

Comparison of methods

Method	Advantages	Disadvantages
X-ray crystallography	 Broad range of molecular weights Soluble proteins, membrane proteins as well as macromolecular complexes (e.g. DNA/RNA and protein complexes) High resolution (< 3Å) 	 The protein of interest must be crystallized and crystals must diffract to the required resolution The 3D structure represents a static form of the target protein
Cryo-EM	 Allows the structure determination of samples that are unamenable to crystallization (e.g. proteins with flexible regions, membrane proteins and large complexes) Vitrification of the sample maintains it in a closer-tonative state than crystallization Very low material consumption (about 0.1 mg) No need for extensive protein engineering to improve the likelihood of crystallization 	 Relatively low resolution (mostly > 3Å) compared to X-ray crystallography Applicable to target proteins and complexes with high molecular weights
NMR	 3D structure of target protein can be measured directly in its natural state in solution It can provide unique information about dynamics and intermolecular interactions 	 The NMR spectrum of biomolecules with large molecular weight (> 40 kDa) is complicated and difficult to interpret It is necessary to have large amounts of labelled protein (and it might be necessary to have differently labelled protein, if the spectra needs to be assigned)

